A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro.
نویسندگان
چکیده
Striatal spiny projection (SP) neurons control movement initiation by integrating cortical inputs and inhibiting basal ganglia outputs. Central to this control lies a "microcircuit" that consists of a feedback pathway formed by axon collaterals between GABAergic SP neurons and a feedforward pathway from fast spiking (FS) GABAergic interneurons to SP neurons. Here, somatically evoked postsynaptic potentials (PSPs) and currents (PSCs) were compared for both pathways with dual whole cell patch recording in voltage- and current-clamp mode using cortex-striatum-substantia nigra organotypic cultures. On average, feedforward inputs were 1 ms earlier, more reliable, and about twice as large in amplitude compared with most feedback inputs. On the other hand, both pathways exhibited widely varying, partially overlapping amplitude distributions. This variability was already established for single FS neurons targeting many SP neurons. In response to precisely timed action potential bursts, feedforward and feedback inputs consistently showed short-term depression < or =50-70% in voltage-clamp, although feedback inputs also displayed strong augmentation in current-clamp in line with previous reports. The augmentation of feedback inputs was absent in gramicidin D perforated-patch recording, which also showed the natural reversal potential for both inputs to be near firing threshold. Preceding depolarizing feedback inputs during the down state did not consistently change subsequent postsynaptic action potentials. We conclude that feedback and feedforward inputs have their dominant effect during the up-state. The reversal potential close to the up-state potential, which supports shunting operation with millisecond precision and the strong synaptic depression, should enable both pathways to carry time-critical information.
منابع مشابه
Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملDifferential modulation of excitatory and inhibitory striatal synaptic transmission by histamine.
Information processing in the striatum is critical for basal ganglia function and strongly influenced by neuromodulators (e.g., dopamine). The striatum also receives modulatory afferents from the histaminergic neurons in the hypothalamus which exhibit a distinct diurnal rhythm with high activity during wakefulness, and little or no activity during sleep. In view of the fact that the striatum al...
متن کاملTarget selectivity of feedforward inhibition by striatal fast-spiking interneurons.
The striatal microcircuitry consists of a vast majority of projection neurons, the medium spiny neurons (MSNs), and a small yet diverse population of interneurons. To understand how activity is orchestrated within the striatum, it is essential to unravel the functional connectivity between the different neuronal types. Fast-spiking (FS) interneurons provide feedforward inhibition to both direct...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 95 2 شماره
صفحات -
تاریخ انتشار 2006